/ Forside / Karriere / Uddannelse / Højere uddannelser / Nyhedsindlæg
Login
Glemt dit kodeord?
Brugernavn

Kodeord


Reklame
Top 10 brugere
Højere uddannelser
#NavnPoint
Nordsted1 1588
erling_l 1224
ans 1150
dova 895
gert_h 800
molokyle 661
berpox 610
creamygirl 610
3773 570
10  jomfruane 570
Oversættelse af engelsk matematik udtryk t~
Fra : Lars Hornbæk Jensen


Dato : 21-01-03 12:37

Efter et semester med et analyse kursus på engelsk kommer er eksamen lige
rundt om hjørnet, den skal selvfølgelig helst foregå på dansk. Men problemet
er så at man aldrig har brugt de danske navne til forskellige begreber så
håber nogen af jer kan fortælle mig hvad de normalt anerkendte danske navne
til følgende på engelsk måtte være.

Interior point (vil tro man kan kalde det internt punkt)
Adherent point
Accumulation point



 
 
Simon Kristensen (21-01-2003)
Kommentar
Fra : Simon Kristensen


Dato : 21-01-03 13:20

"Lars Hornbæk Jensen" <lhj@math.auc.dk> writes:

> Efter et semester med et analyse kursus på engelsk kommer er eksamen lige
> rundt om hjørnet, den skal selvfølgelig helst foregå på dansk. Men problemet
> er så at man aldrig har brugt de danske navne til forskellige begreber så
> håber nogen af jer kan fortælle mig hvad de normalt anerkendte danske navne
> til følgende på engelsk måtte være.
>
> Interior point (vil tro man kan kalde det internt punkt)

Indre punkt

> Adherent point

Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
definitionen på "adherent point")

> Accumulation point

Akkumulationspunkt

Venligst

Simon

--
The good Christian should beware of mathematicians, and all those who
make empty prophecies. The danger already exists that the
mathematicians have made a covenant with the devil to darken the
spirit and to confine man in the bonds of Hell. -- St. Augustin

Lars Hornbæk Jensen (21-01-2003)
Kommentar
Fra : Lars Hornbæk Jensen


Dato : 21-01-03 13:41



> > Adherent point
>
> Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
> definitionen på "adherent point")

Det kan du tro jeg kan.

Lad S være en delmængde af R^n og x et punkt i R^n, ikke nødvendigvis i S.
Da siges x at være "adherent" til S hvis enhver n-kugle B(x) indeholder
mindst et punkt fra S.





Simon Kristensen (21-01-2003)
Kommentar
Fra : Simon Kristensen


Dato : 21-01-03 13:51

"Lars Hornbæk Jensen" <lhj@math.auc.dk> writes:

> > > Adherent point
> >
> > Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
> > definitionen på "adherent point")
>
> Det kan du tro jeg kan.
>
> Lad S være en delmængde af R^n og x et punkt i R^n, ikke nødvendigvis i S.
> Da siges x at være "adherent" til S hvis enhver n-kugle B(x) indeholder
> mindst et punkt fra S.

Hep! Det er et kontaktpunkt. Forøvrigt kaldes akkumulationspunktier
til tider fortætningspunkter, hvis du altså er til den slags...

Venligst

Simon

--
The good Christian should beware of mathematicians, and all those who
make empty prophecies. The danger already exists that the
mathematicians have made a covenant with the devil to darken the
spirit and to confine man in the bonds of Hell. -- St. Augustin

Lars Hornbæk Jensen (21-01-2003)
Kommentar
Fra : Lars Hornbæk Jensen


Dato : 21-01-03 13:55

Mange tak for hjælpen


Simon Kristensen <spam_me_senseless@simonsays.dk> skrev i en
nyhedsmeddelelse:m3znpuoee1.fsf@chaos1.york.ac.uk...
> "Lars Hornbæk Jensen" <lhj@math.auc.dk> writes:
>
> > > > Adherent point
> > >
> > > Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
> > > definitionen på "adherent point")
> >
> > Det kan du tro jeg kan.
> >
> > Lad S være en delmængde af R^n og x et punkt i R^n, ikke nødvendigvis i
S.
> > Da siges x at være "adherent" til S hvis enhver n-kugle B(x) indeholder
> > mindst et punkt fra S.
>
> Hep! Det er et kontaktpunkt. Forøvrigt kaldes akkumulationspunktier
> til tider fortætningspunkter, hvis du altså er til den slags...
>
> Venligst
>
> Simon
>
> --
> The good Christian should beware of mathematicians, and all those who
> make empty prophecies. The danger already exists that the
> mathematicians have made a covenant with the devil to darken the
> spirit and to confine man in the bonds of Hell. -- St. Augustin



Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 13:45

Lars Hornbæk Jensen wrote:
>>> Adherent point
>>
>> Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
>> definitionen på "adherent point")
>
> Det kan du tro jeg kan.
>
> Lad S være en delmængde af R^n og x et punkt i R^n, ikke nødvendigvis
> i S. Da siges x at være "adherent" til S hvis enhver n-kugle B(x)
> indeholder mindst et punkt fra S.

Så ville jeg oversætte "x is an adherent point" til "x er i aflukningen".

--
Jens Axel Søgaard




Lars Hornbæk Jensen (21-01-2003)
Kommentar
Fra : Lars Hornbæk Jensen


Dato : 21-01-03 13:55

Mange tak for hjælpen

> Lars Hornbæk Jensen wrote:
> >>> Adherent point
> >>
> >> Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
> >> definitionen på "adherent point")
> >
> > Det kan du tro jeg kan.
> >
> > Lad S være en delmængde af R^n og x et punkt i R^n, ikke nødvendigvis
> > i S. Da siges x at være "adherent" til S hvis enhver n-kugle B(x)
> > indeholder mindst et punkt fra S.
>
> Så ville jeg oversætte "x is an adherent point" til "x er i aflukningen".
>
> --
> Jens Axel Søgaard
>
>
>



Simon Kristensen (21-01-2003)
Kommentar
Fra : Simon Kristensen


Dato : 21-01-03 14:01

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Lars Hornbæk Jensen wrote:
> >>> Adherent point
> >>
> >> Kontaktpunkt (jeg er ikke helt sikker her - kan du give os
> >> definitionen på "adherent point")
> >
> > Det kan du tro jeg kan.
> >
> > Lad S være en delmængde af R^n og x et punkt i R^n, ikke nødvendigvis
> > i S. Da siges x at være "adherent" til S hvis enhver n-kugle B(x)
> > indeholder mindst et punkt fra S.
>
> Så ville jeg oversætte "x is an adherent point" til "x er i aflukningen".

Nu har jeg hevet en bog ned fra reolen [1]. Lars' definition er
sammenfaldende med Gutmann Madsens definition af et
kontaktpunkt. Mængden af kontaktpunkter for S kaldes afslutningen af
S. De rette oversættelser må være:

x is in the closure of S x er i afslutningen af S

x is an adherent point of S x er et kontaktpunkt for S

Undskyld flueknepperiet - sådan bliver man efter alt for mange års
matematisk analyse

Venligst

Simon

[1] Tage Gutmann Madsen's noter i Matematisk Analyse

--
The good Christian should beware of mathematicians, and all those who
make empty prophecies. The danger already exists that the
mathematicians have made a covenant with the devil to darken the
spirit and to confine man in the bonds of Hell. -- St. Augustin

Jeppe Stig Nielsen (21-01-2003)
Kommentar
Fra : Jeppe Stig Nielsen


Dato : 21-01-03 15:07

Simon Kristensen wrote:
>
> Nu har jeg hevet en bog ned fra reolen [1]. Lars' definition er
> sammenfaldende med Gutmann Madsens definition af et
> kontaktpunkt. Mængden af kontaktpunkter for S kaldes afslutningen af
> S.

Den bog står også klart i min erindring. Mængden af kontaktpunkter
kaldes for S¯ (afslutningen), og mængden af indre punkter kanldes
for S° (det indre). Da gælder

S° delmængde af S delmængde af S¯

og hvis den første hhv. den anden inklusion faktisk er en lighed,
kaldes S åben hhv. afsluttet.

Mængdedifferensen S¯ \ S° kaldes randen (engelsk boundary) for S.
Man ser at hviss randen er tom, er S både åben og afsluttet.

--
Jeppe Stig Nielsen <URL:http://jeppesn.dk/>. «

"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 19:09

Simon Kristensen wrote:
> "Jens Axel Søgaard" <usenet@soegaard.net> writes:

>> Så ville jeg oversætte "x is an adherent point" til "x er i
>> aflukningen".

> De rette oversættelser må være:
>
> x is in the closure of S x er i afslutningen af S
>
> x is an adherent point of S x er et kontaktpunkt for S
>
> Undskyld flueknepperiet - sådan bliver man efter alt for mange års
> matematisk analyse

Undskylde? Nøjagtighed er en dyd.

Heldigvis er udtrykkene ækvivalente (så længe det drejer sig om R^n).

--
Jens Axel Søgaard




Henning Makholm (21-01-2003)
Kommentar
Fra : Henning Makholm


Dato : 21-01-03 19:34

Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
> Simon Kristensen wrote:

> > x is in the closure of S x er i afslutningen af S

> > x is an adherent point of S x er et kontaktpunkt for S

> Heldigvis er udtrykkene ækvivalente (så længe det drejer sig om R^n).

Hm, det er efterhånden lang tid siden at jeg havde topologi, men
hvornår er de *ikke* ækvivlante?

--
Henning Makholm "Det må være spændende at bo på
en kugle. Har I nogen sinde besøgt de
egne, hvor folk går rundt med hovedet nedad?"

Michael Knudsen (21-01-2003)
Kommentar
Fra : Michael Knudsen


Dato : 21-01-03 20:57

On Tue, 21 Jan 2003 19:34:07 +0100, Henning Makholm wrote:

> Hm, det er efterhånden lang tid siden at jeg havde topologi, men
> hvornår er de *ikke* ækvivlante?

Jeg skelner ikke mellem kontaktpunkter og "afslutningspunkter", men læser
man definitionen af kontaktpunkt, som blev givet i denne tråd, blev der
eksplicit nævnt åbne kugler. Det giver ikke mening, med mindre man har en
metrik (som f.eks. på R^n).

/Michael Knudsen

Jeppe Stig Nielsen (21-01-2003)
Kommentar
Fra : Jeppe Stig Nielsen


Dato : 21-01-03 23:20

Michael Knudsen wrote:
>
> On Tue, 21 Jan 2003 19:34:07 +0100, Henning Makholm wrote:
>
> > Hm, det er efterhånden lang tid siden at jeg havde topologi, men
> > hvornår er de *ikke* ækvivlante?
>
> Jeg skelner ikke mellem kontaktpunkter og "afslutningspunkter", men læser
> man definitionen af kontaktpunkt, som blev givet i denne tråd, blev der
> eksplicit nævnt åbne kugler. Det giver ikke mening, med mindre man har en
> metrik (som f.eks. på R^n).

Hvad er det nu nogle forfattere kalder et punkt i afslutningen af S som
samtidig *ikke* er et isoleret punkt i S? Altså et punkt x (som ikke
nødvendigvis er element i S) således at enhver omegn om x indeholder
et punkt s forskelligt fra x hvor s er i S.

--
Jeppe Stig Nielsen <URL:http://jeppesn.dk/>. «

"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)

Niels Teglsbo (22-01-2003)
Kommentar
Fra : Niels Teglsbo


Dato : 22-01-03 16:28

Jeppe Stig Nielsen <mail@jeppesn.dk> wrote:

> Hvad er det nu nogle forfattere kalder et punkt i afslutningen af S som
> samtidig *ikke* er et isoleret punkt i S? Altså et punkt x (som ikke
> nødvendigvis er element i S) således at enhver omegn om x indeholder
> et punkt s forskelligt fra x hvor s er i S.

Munkres kalder det for et "limit point".

Mon det kunne hedde et "grænsepunkt" på dansk? (Jeg gætter bare, jeg tror
ikke jeg har hørt det på dansk).

--
Niels, The Offspring Mailinglist www.image.dk/~teglsbo

Jeppe Stig Nielsen (24-01-2003)
Kommentar
Fra : Jeppe Stig Nielsen


Dato : 24-01-03 21:24

Niels Teglsbo wrote:
>
> > Hvad er det nu nogle forfattere kalder et punkt i afslutningen af S som
> > samtidig *ikke* er et isoleret punkt i S? Altså et punkt x (som ikke
> > nødvendigvis er element i S) således at enhver omegn om x indeholder
> > et punkt s forskelligt fra x hvor s er i S.
>
> Munkres kalder det for et "limit point".

Nå ja, det er også dét det hedder i lille Rudin (dvs. »Principles of
Mathematical Analysis« af Walter Rudin).

--
Jeppe Stig Nielsen <URL:http://jeppesn.dk/>. «

"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)

Niels Teglsbo (21-01-2003)
Kommentar
Fra : Niels Teglsbo


Dato : 21-01-03 21:15

Henning Makholm <henning@makholm.net> wrote:

> Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
> > Simon Kristensen wrote:
> > > x is in the closure of S x er i afslutningen af S
> > > x is an adherent point of S x er et kontaktpunkt for S
> > Heldigvis er udtrykkene ækvivalente (så længe det drejer sig om R^n).
> Hm, det er efterhånden lang tid siden at jeg havde topologi, men
> hvornår er de *ikke* ækvivlante?

Aldrig.

Munkres sætning 17.5:

Let A be a subset of the topological space X. Then

x is in A¯ <=> every open set U containing x intersects A.

Vises nemt ved kontraponering.

--
Niels, The Offspring Mailinglist www.image.dk/~teglsbo

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 22:20

Henning Makholm wrote:
> Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
>> Simon Kristensen wrote:
>
>>> x is in the closure of S x er i afslutningen af S
>
>>> x is an adherent point of S x er et kontaktpunkt for S
>
>> Heldigvis er udtrykkene ækvivalente (så længe det drejer sig om R^n).
>
> Hm, det er efterhånden lang tid siden at jeg havde topologi, men
> hvornår er de *ikke* ækvivlante?

Jeg skrev sådan for at slippe for at overveje det
Men hvad skal der til?

Kontaktpunkter er defineret udfra et begreb om konvergens af følger.

Afslutningen af en mængde S kan også defineres om den mindste (med
hensyn til mængdeinklusion) afsluttede mængde, som indeholder S.
Denne definition kan bruges i en hvilken som helst topologi.

Hvis man nu for sjovs skyld fastlægger en topologi, som ikke stemmer
overens med det valgte konvergensbegreb vil afslutningen og
mængden af kontaktpunkter ikke nødvendigvis være ens.

Hm. Ved nærmere eftertanke inducerer et konvegensbegreb en topologi
og omvendt. Så jeg siger vel nærmest, at kigger man på konvergens
i to forskellige topologier behøver konvergens af en følge i den ene
topologi ikke medføre konvergens i den anden.

Sammenligner vi med Niels' sætning, så starter han fornuftigt nok med at
antage, at S er en delmængde af et bestemt topologisk rum; altså at
at konvergenstopologien og afslutningstopologien er den samme.

--
Jens Axel Søgaard




Henning Makholm (21-01-2003)
Kommentar
Fra : Henning Makholm


Dato : 21-01-03 22:35

Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>

> Kontaktpunkter er defineret udfra et begreb om konvergens af følger.

Er det en universel vedtagelse? Umiddelbart ville jeg have gået ud fra
en direkte definition med "for alle omegne ...".

> Hm. Ved nærmere eftertanke inducerer et konvegensbegreb en topologi
> og omvendt.

Det er jeg ikke sikker på, ihvertfald ikke følgekonvergens. Jeg kan
huske noget om at man skal udvide følgebegrebet til net (punktfamilier
indekseret ved en partielt ordnet mængde med en eller anden
komplethedsegenskab) for at bevare de kendte korrespondencer fra
metriske rum. Men jeg har lykkeligt glemt detaljerne, herunder hvad
det er der ikke virker med følgekonvergens.

--
Henning Makholm "This imposes the restriction on any
procedure statement that the kind and type
of each actual parameter be compatible with the
kind and type of the corresponding formal parameter."

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 22:56

Henning Makholm wrote:
> Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
>
>> Kontaktpunkter er defineret udfra et begreb om konvergens af følger.
>
> Er det en universel vedtagelse? Umiddelbart ville jeg have gået ud fra
> en direkte definition med "for alle omegne ...".
>
>> Hm. Ved nærmere eftertanke inducerer et konvegensbegreb en topologi
>> og omvendt.
>
> Det er jeg ikke sikker på, ihvertfald ikke følgekonvergens. Jeg kan
> huske noget om at man skal udvide følgebegrebet til net (punktfamilier
> indekseret ved en partielt ordnet mængde med en eller anden
> komplethedsegenskab) for at bevare de kendte korrespondencer fra
> metriske rum. Men jeg har lykkeligt glemt detaljerne, herunder hvad
> det er der ikke virker med følgekonvergens.

Det har jeg også, men jeg kan se i Gert K. Pedersen i "Acapolypse now"
skriver:

Sequences suffice to handle all convergence problems in spaces, that
satisfy the first axiom of countability, in particular, all metric spaces.
Certain spaces (e.g. Hilbert space in the weal topology) require the
more general notion of nets, and certain complicated convergence
arguments.

Senere indføres Hausdorff-rum, hvor alle forskellige x og y er separede
af åbne mængder. Her er så en sætning, som siger,at net i Hausdorffrum
kun konvergerer mod et punkt.

Det kunne godt tyde på, at man ikke kan slutte at en vilkårlig topologi
inducerer et følgekonvergensbegreb, men snarere kun et konvergensbegreb,
hvis man griber til anvendelsen af net.

Det må jeg sige: Ret godt husket af en, der har glemt detaljerne

--
Jens Axel Søgaard




Henning Makholm (24-01-2003)
Kommentar
Fra : Henning Makholm


Dato : 24-01-03 22:20

Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
> Henning Makholm wrote:

> > Men jeg har lykkeligt glemt detaljerne, herunder hvad
> > det er der ikke virker med følgekonvergens.

> Det har jeg også,

Nu faldt jeg lige over mine topologinoter. De antyder følgende
modeksempel, som forudsætter udvalgsaksiomet.

1. Lad X være en velordnet overtællelig mængde. (Sådan en kan let
findes ved hjælp af udvalgsaksiomet, men ellers er det vist ikke
lige til at bevise at sådanne overhovedet findes).

2. Uden tab af generalitet kan vi antage at X indeholder et element *
med overtællelig mange forgængere. Ellers tilføjer vi bare et
kunstigt * og definerer at det kommer efter alle de oprindelige
elementer.

3. Lad A være delmængden af X bestående af alle punkter med højst
tællelig mange forgængere. Specielt er * ikke er i A.

4. A må være overtællelig, for hvis den var tællelig, ville
første element i X\A selv skulle være i A, hvilket er en modstrid.

5. Forsyn X med følgende topologi: En delmængde B af X kaldes åben
hvis B indeholder mindst et element fra A og er opad lukket, dvs
hvis x i B og y>x medfører y i B. (Denne mængde af mængder er
tydeligvis en topologi).

6. A er tæt i X pr definition af topologien.

7. Lad (xi)i være en vilkårlig følge i P. Mængden

C = { y | y <= xi for et i }

vil nu være tællelig, idet den er foreningsmængde af tælleligt
mange tællelige mængder.
Derfor A\C er ikke tom (jf 4), så X\C indeholder et punkt i A.
Men X\C er også klart opad lukket, så X\C er åben.
Eftersom X\C ikke indeholder nogen elementer fra følgen, må
ethvert grænsepunkt for følgen (om noget) være i C.
Men C er pr konstruktion delmængde af A, så * kan ikke være
grænsepunkt for følgen.

Nu er * kontaktpunkt for A (jf 6), men ikke grænsepunkt for
nogen følge i A (jf 7).

--
Henning Makholm "Jeg kunne ikke undgå at bemærke at han gik på hænder."

Søren Galatius Smith (21-01-2003)
Kommentar
Fra : Søren Galatius Smith


Dato : 21-01-03 22:42

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Henning Makholm wrote:
> > Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
> >> Simon Kristensen wrote:
> >
> >>> x is in the closure of S x er i afslutningen af S
> >
> >>> x is an adherent point of S x er et kontaktpunkt for S
> >
> >> Heldigvis er udtrykkene ækvivalente (så længe det drejer sig om R^n).
> >
> > Hm, det er efterhånden lang tid siden at jeg havde topologi, men
> > hvornår er de *ikke* ækvivlante?
>
> Jeg skrev sådan for at slippe for at overveje det
> Men hvad skal der til?

Man kan have en delmængde A af et topologisk rum X så der findes et
element x i afslutningen af A, men hvor der ikke findes en følge af
elementer i A som konvergerer mod x. Måske er det noget med det?

Søren

Henning Makholm (21-01-2003)
Kommentar
Fra : Henning Makholm


Dato : 21-01-03 14:14

Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>

> Så ville jeg oversætte "x is an adherent point" til "x er i aflukningen".

Og jeg ville sige "afslutningen" i stedet for "aflukningen".

--
Henning Makholm "Den nyttige hjemmedatamat er og forbliver en myte.
Generelt kan der ikke peges på databehandlingsopgaver af
en sådan størrelsesorden og af en karaktér, som berettiger
forestillingerne om den nye hjemme- og husholdningsteknologi."

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 19:13

Henning Makholm wrote:
> Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
>
>> Så ville jeg oversætte "x is an adherent point" til "x er i
>> aflukningen".
>
> Og jeg ville sige "afslutningen" i stedet for "aflukningen".

Det plejer jeg vist også. I denne tråd argumenteres for, at
det er bedre at bruge ordet afslutning end aflukning, da
man så ikke falder i fælden "det modsatte af lukket er åben":

<http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&threadm=3d761527%240%24159%24edfadb0f%40dspool01.news.tele.dk&rnum=1&prev=/group
s%3Fq%3Dafslutning%2Baflukning%26hl%3Den%26lr%3D%26ie%3DUTF-8%26selm%3D3d761527%25240%2524159%2524edfadb0f%2540dspool01.news.tele.dk
%26rnum%3D1>

Der også en, der mener, at man bruger det ene ord i Århus og det andet i
København; men det tror jeg ikke på -- Gutmann blev jo brugt længe i Århus.

--
Jens Axel Søgaard




Henning Makholm (21-01-2003)
Kommentar
Fra : Henning Makholm


Dato : 21-01-03 19:37

Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>

> <http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&threadm=3d761527%240%24159%24edfadb0f%40dspool01.news.tele.dk&rnum=1&prev=/group
> s%3Fq%3Dafslutning%2Baflukning%26hl%3Den%26lr%3D%26ie%3DUTF-8%26selm%3D3d761527%25240%2524159%2524edfadb0f%2540dspool01.news.tele.dk
> %26rnum%3D1>

Et tip til henvisninger til groups.google.com: Man kan undvære alle
andre søgeargumenter end threadm=<message-id> (hhv selm=<message-id>).
Det reducerer risikoen for at linket knækker, og gør det lettere for
læseren at samle det hvis det knækker alligevel.

--
Henning Makholm "Det er jo svært at vide noget når man ikke ved det, ikke?"

Martin Larsen (21-01-2003)
Kommentar
Fra : Martin Larsen


Dato : 21-01-03 20:28


"Henning Makholm" <henning@makholm.net> skrev i en meddelelse news:yahwukye4dc.fsf@pc-043.diku.dk...
> Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
>
> >
<http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&threadm=3d761527%240%24159%24edfadb0f%40dspool01.news.tele.dk&rnum=1&prev=/group
> >
s%3Fq%3Dafslutning%2Baflukning%26hl%3Den%26lr%3D%26ie%3DUTF-8%26selm%3D3d761527%25240%2524159%2524edfadb0f%2540dspool01.news.tele.dk
> > %26rnum%3D1>
>
> Et tip til henvisninger til groups.google.com: Man kan undvære alle
> andre søgeargumenter end threadm=<message-id> (hhv selm=<message-id>).
> Det reducerer risikoen for at linket knækker, og gør det lettere for
> læseren at samle det hvis det knækker alligevel.
>
Alternativt kan man bruge:
http://makeashorterlink.com/

Mvh
Martin



Henning Makholm (21-01-2003)
Kommentar
Fra : Henning Makholm


Dato : 21-01-03 20:27

Scripsit "Martin Larsen" <mlarsen@post7.tele.dk>
> "Henning Makholm" <henning@makholm.net> skrev

> > Et tip til henvisninger til groups.google.com: Man kan undvære alle
> > andre søgeargumenter end threadm=<message-id> (hhv selm=<message-id>).
> > Det reducerer risikoen for at linket knækker, og gør det lettere for
> > læseren at samle det hvis det knækker alligevel.

> Alternativt kan man bruge:
> http://makeashorterlink.com/

Det duer kun indtil makeashorterlink.com går konkurs eller beslutter
sig til at ændre forretningsmodel. Et kort ægte google-link virker
lige så længe google faktisk har det man henviser til.

--
Henning Makholm "Så drikker jeg det hele. Det har en festlig smag."

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 22:04

Henning Makholm wrote:
> Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>

[Grusomt link]

> Et tip til henvisninger til groups.google.com: Man kan undvære alle
> andre søgeargumenter end threadm=<message-id> (hhv selm=<message-id>).

Tjek.

--
Jens Axel Søgaard




Martin Larsen (21-01-2003)
Kommentar
Fra : Martin Larsen


Dato : 21-01-03 20:50


"Jens Axel Søgaard" <usenet@soegaard.net> skrev i en meddelelse news:3e2d8dd6$0$11069$edfadb0f@dread12.news.tele.dk...
> Henning Makholm wrote:
> > Scripsit "Jens Axel Søgaard" <usenet@soegaard.net>
> >
> >> Så ville jeg oversætte "x is an adherent point" til "x er i
> >> aflukningen".
> >
> > Og jeg ville sige "afslutningen" i stedet for "aflukningen".
>
> Det plejer jeg vist også. I denne tråd argumenteres for, at
> det er bedre at bruge ordet afslutning end aflukning, da
> man så ikke falder i fælden "det modsatte af lukket er åben":
>
Men det er vel ingen fælde.
Fælden bestod i følgende:
A er ikke en lukket mængde => A er en åben mængde

Mvh
Martin



Jesper Harder (21-01-2003)
Kommentar
Fra : Jesper Harder


Dato : 21-01-03 20:16

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Der også en, der mener, at man bruger det ene ord i Århus og det andet
> i København; men det tror jeg ikke på -- Gutmann blev jo brugt længe i
> Århus.

Ja, men Mat11-forelæserne sagde altid lukket. Jeg kan huske at en af
dem (Tornehave eller Stetkær) specifikt gjorde opmærksom på at
»afsluttet« i TGM's noter skulle udtales »lukket«.

<bladre, bladre> Jeg kan også se, at jeg har understreget ordet første
gang det optræder i bogen, og skrevet »= lukket«.

Stefan Holm (21-01-2003)
Kommentar
Fra : Stefan Holm


Dato : 21-01-03 22:03

"Michael Knudsen" <knudsen@imf.au.dk> writes:

> Jeg skelner ikke mellem kontaktpunkter og "afslutningspunkter", men læser
> man definitionen af kontaktpunkt, som blev givet i denne tråd, blev der
> eksplicit nævnt åbne kugler.

Ja, menå man skal vel ikke have haft meget generel topologi før man
automatisk erstatter kugler med omegne i den slags definitioner?

--
"Thanks for the Dadaist pep talk,
I feel much more abstract now."

Stefan Holm (21-01-2003)
Kommentar
Fra : Stefan Holm


Dato : 21-01-03 22:11

"Michael Knudsen" <knudsen@imf.au.dk> writes:

> Jeg skelner ikke mellem kontaktpunkter og "afslutningspunkter", men læser
> man definitionen af kontaktpunkt, som blev givet i denne tråd, blev der
> eksplicit nævnt åbne kugler.

Ja, men man skal vel ikke have haft meget generel topologi før man
automatisk erstatter kugler med omegne i den slags definitioner?

--
"Thanks for the Dadaist pep talk,
I feel much more abstract now."

Michael Knudsen (22-01-2003)
Kommentar
Fra : Michael Knudsen


Dato : 22-01-03 09:15

On Tue, 21 Jan 2003 22:10:40 +0100, Stefan Holm wrote:

> Ja, men man skal vel ikke have haft meget generel topologi før man
> automatisk erstatter kugler med omegne i den slags definitioner?

Nej, det er også derfor, jeg ikke skelner mellem de to betegnelser. Det
oprindelige spørgsmål tog udgangspunkt i noget fra et analysekursus. Jeg
kan meget let forestille mig, at man ikke har snakket om generelle,
topologiske rum i et sådant kursus (som f.eks. Analyse 1 på AU).

/Michael Knudsen


Stefan Holm (21-01-2003)
Kommentar
Fra : Stefan Holm


Dato : 21-01-03 22:45

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Jeg skrev sådan for at slippe for at overveje det
> Men hvad skal der til?
>
> Kontaktpunkter er defineret udfra et begreb om konvergens af følger.

Altså et punkt er et kontaktpunkt for en mængde, hvis det kan fås som
grænsepunkt for en konvergent følge af elementer i mængden? I så fald
må alle kontaktpunkter være i afslutningen og 1.-tællelighed vil give
det omvendte.

I øvrigt ville jeg enten bruge net eller omegne til at definere
kontaktpunkter.

> Hvis man nu for sjovs skyld fastlægger en topologi, som ikke stemmer
> overens med det valgte konvergensbegreb vil afslutningen og
> mængden af kontaktpunkter ikke nødvendigvis være ens.

Det ville jeg betegne som noget rod. Hvis begreberne skal være bare
nogenlunde veldefinerede, bør de være tilknyttede til en given
delmængde af et givet topologisk rum.

--
"I'd rip it in half and stick it in bed with me!"

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 23:00

Stefan Holm wrote:
> "Jens Axel Søgaard" <usenet@soegaard.net> writes:

>> Hvis man nu for sjovs skyld fastlægger en topologi, som ikke stemmer
>> overens med det valgte konvergensbegreb vil afslutningen og
>> mængden af kontaktpunkter ikke nødvendigvis være ens.
>
> Det ville jeg betegne som noget rod.

Noget værre rod. Hvor ofte man i "praksis" kigger på
samme rum underlagt forskellige topologierm aner jeg ikke.
Sikkert aldrig.

> Hvis begreberne skal være bare
> nogenlunde veldefinerede, bør de være tilknyttede til en given
> delmængde af et givet topologisk rum.

Både konvergens og afslutning er vel altid defineret relativ til
en bestemt topologi, så begreberne er vel veldefinerede?

--
Jens Axel Søgaard




Stefan Holm (21-01-2003)
Kommentar
Fra : Stefan Holm


Dato : 21-01-03 23:08

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Det har jeg også, men jeg kan se i Gert K. Pedersen i "Acapolypse
> now"

"Analysis now". Er der nogen der kender en boghandel, hvor jeg kan
købe den? Amazon.de gav op efter en måneds tid.

> Senere indføres Hausdorff-rum, hvor alle forskellige x og y er separede
> af åbne mængder. Her er så en sætning, som siger,at net i Hausdorffrum
> kun konvergerer mod et punkt.

Forhåbentlig går den også den anden vej, altså at hvis alle net højst
har ét grænsepunkt, så er rummet hausdorff?

--
"Say, you all didn't happen to do a bunch of drugs, did ya?"

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 23:21

Stefan Holm wrote:
> "Jens Axel Søgaard" <usenet@soegaard.net> writes:

>> Det har jeg også, men jeg kan se i Gert K. Pedersen i "Acapolypse
>> now"
>
> "Analysis now". Er der nogen der kender en boghandel, hvor jeg kan
> købe den? Amazon.de gav op efter en måneds tid.

Har du tjekket "den anden" universitetsboghandel (jeg kan ikke huske,
om du er fra Århus eller København) - du kunne jo være heldig, at
de har eksemplar liggende.

>> Senere indføres Hausdorff-rum, hvor alle forskellige x og y er
>> separede af åbne mængder. Her er så en sætning, som siger,at net i
>> Hausdorffrum kun konvergerer mod et punkt.
>
> Forhåbentlig går den også den anden vej, altså at hvis alle net højst
> har ét grænsepunkt, så er rummet hausdorff?

Ja.

--
Jens Axel Søgaard




Michael Knudsen (22-01-2003)
Kommentar
Fra : Michael Knudsen


Dato : 22-01-03 09:21

On Tue, 21 Jan 2003 23:07:36 +0100, Stefan Holm wrote:

> "Analysis now". Er der nogen der kender en boghandel, hvor jeg kan
> købe den? Amazon.de gav op efter en måneds tid.

Jeg har set den på hylden i bogladen i Århus. Det kan godt være, at den er
blevet solgt, men det tror jeg faktisk ikke.

> Forhåbentlig går den også den anden vej, altså at hvis alle net højst
> har ét grænsepunkt, så er rummet hausdorff?

Bredon 6.3

/Michael Knudsen

Stefan Holm (21-01-2003)
Kommentar
Fra : Stefan Holm


Dato : 21-01-03 23:12

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Noget værre rod. Hvor ofte man i "praksis" kigger på
> samme rum underlagt forskellige topologierm aner jeg ikke.

Jeg synes de gør det hele tiden i funktionalanalyse. Der er
norm-topologi, svag topologi, svag-*-topologi, svag operator-topologi
og stærk operator-topologi.

> Sikkert aldrig.

Alt ville være lettere i så fald. Men ak.

> Både konvergens og afslutning er vel altid defineret relativ til
> en bestemt topologi, så begreberne er vel veldefinerede?

Ja, ok.

--
"Min frikirkepræst fra Randers var begejstret for dine signaturer."

Jeppe Stig Nielsen (21-01-2003)
Kommentar
Fra : Jeppe Stig Nielsen


Dato : 21-01-03 23:23

Jesper Harder wrote:
>
> > Der også en, der mener, at man bruger det ene ord i Århus og det andet
> > i København; men det tror jeg ikke på -- Gutmann blev jo brugt længe i
> > Århus.
>
> Ja, men Mat11-forelæserne sagde altid lukket. Jeg kan huske at en af
> dem (Tornehave eller Stetkær) specifikt gjorde opmærksom på at
> »afsluttet« i TGM's noter skulle udtales »lukket«.
>
> <bladre, bladre> Jeg kan også se, at jeg har understreget ordet første
> gang det optræder i bogen, og skrevet »= lukket«.

Ebbe Thue Poulsen der forelæste for førsteårsstuderende i Århus 1993-94,
sagde »afsluttet« ligesom der stod i Gutmann. Men de fleste andre fore-
læsere i Århus som jeg husker, sagde »lukket«.

--
Jeppe Stig Nielsen <URL:http://jeppesn.dk/>. «

"Je n'ai pas eu besoin de cette hypothèse (I had no need of that
hypothesis)" --- Laplace (1749-1827)

Michael Knudsen (22-01-2003)
Kommentar
Fra : Michael Knudsen


Dato : 22-01-03 09:12

On Tue, 21 Jan 2003 23:23:29 +0100, Jeppe Stig Nielsen wrote:

> Ebbe Thue Poulsen der forelæste for førsteårsstuderende i Århus 1993-94,
> sagde »afsluttet« ligesom der stod i Gutmann. Men de fleste andre fore-
> læsere i Århus som jeg husker, sagde »lukket«.

Jeg havde Ebbe Thue det sidste år, han forelæste. Han brugte altid
betegnelsen "lukket".

/Michael Knudsen

Jens Axel Søgaard (22-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 22-01-03 14:46

Michael Knudsen wrote:
> On Tue, 21 Jan 2003 23:23:29 +0100, Jeppe Stig Nielsen wrote:
>
>> Ebbe Thue Poulsen der forelæste for førsteårsstuderende i Århus 1993-
>> 94, sagde »afsluttet« ligesom der stod i Gutmann. Men de fleste
>> andre fore- læsere i Århus som jeg husker, sagde »lukket«.
>
> Jeg havde Ebbe Thue det sidste år, han forelæste. Han brugte altid
> betegnelsen "lukket".

Men han brugte jo heller ikke Gutmann sidste år.

--
Jens Axel Søgaard




Stefan Holm (21-01-2003)
Kommentar
Fra : Stefan Holm


Dato : 21-01-03 23:34

"Jens Axel Søgaard" <usenet@soegaard.net> writes:

> Har du tjekket "den anden" universitetsboghandel (jeg kan ikke huske,
> om du er fra Århus eller København) - du kunne jo være heldig, at
> de har eksemplar liggende.

Nej, det har jeg faktisk ikke, god idé (jeg er i øvrigt fra
København).

--
"I've created lutherans."

John Olsen (22-01-2003)
Kommentar
Fra : John Olsen


Dato : 22-01-03 08:17

Stefan Holm <nospam@algebra.dk> writes:

> "Jens Axel Søgaard" <usenet@soegaard.net> writes:
>
> > Har du tjekket "den anden" universitetsboghandel (jeg kan ikke huske,
> > om du er fra Århus eller København) - du kunne jo være heldig, at
> > de har eksemplar liggende.
>
> Nej, det har jeg faktisk ikke, god idé (jeg er i øvrigt fra
> København).

Prøv at kigge på Springers hjemmeside; det plejer faktisk at være det
billigste sted.

Jeg mener også at Springer-lange Antiquariat har et brugt eksemplar
liggende.

Der er links til disse sider på min mathematics side.

John

--
John Olsen
http://www.johno.dk

"Thou, nature, art my goddess; to thy laws my services are bound..."
Carl F. Gauss

Jens Axel Søgaard (21-01-2003)
Kommentar
Fra : Jens Axel Søgaard


Dato : 21-01-03 13:09

Lars Hornbæk Jensen wrote:
> Efter et semester med et analyse kursus på engelsk kommer er eksamen
> lige rundt om hjørnet, den skal selvfølgelig helst foregå på dansk.
> Men problemet er så at man aldrig har brugt de danske navne til
> forskellige begreber så håber nogen af jer kan fortælle mig hvad de
> normalt anerkendte danske navne til følgende på engelsk måtte være.
>
> Interior point (vil tro man kan kalde det internt punkt)

Indre punkt / punkt i det indre.

> Adherent point

Hvad er den matematiske definition?

> Accumulation point

Fortætningspunkt.

--
Jens Axel Søgaard




Søg
Reklame
Statistik
Spørgsmål : 177559
Tips : 31968
Nyheder : 719565
Indlæg : 6408937
Brugere : 218888

Månedens bedste
Årets bedste
Sidste års bedste