hmm... du kommer frem til at snasynligheden for at slå et tal hvor 3 går op
er 6/20, hvilket er det samme som 3/10. Det er jo det samme forhold imellem
delmængdne og hele mængdens størrelse....senere kommer du frem til at
sanligheden for at 3 går op, hvis vi ved tallet er lige, også er 3/10... du
skulle lige pointere at sansynligheden jo faktisk er den samme. Delmængden
bliver halveret men det gør hele mængden jo også, idet vi jo ved at det
bliver et lige tal.
Holt
"Lasse Reichstein Nielsen" <lrn@hotpop.com> wrote in message
news:1xqcbtc5.fsf@hotpop.com...
> Jeppe Stig Nielsen <mail@jeppesn.dk> writes:
>
> > Betragt et kast med en terning, og lad
>
> Eller for at give et eksempel hvor A ikke er indeholdt i B.
>
> Først, hvis vi slår med en tyvesidet terning, hvad er de mulige
> udfald så?
> De er:
> {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20}
> og de har samme sandsynlighed (1/20).
> Hvad er sandsynligheden for at tre går op i resultatet?
> Her tæller vi simpelthen hvor mange resultater hvor 3
> går op, og dividerer med det samlede antal.
>
> Dem som 3 går op i er:
> [3 går op] = {3,6,9,12,15,18}
> Der er seks ud af tyve, så sandsynligheden for at 3 går op
> i resultatet af et slag med en tyvesidet terning er 6/20.
>
> Hvad nu hvis vi ved/antager at resultatet er lige? Hvad er
> så sandsynligheden for at 3 også går op i resultatet.
>
> Altså P(3 går op|2 går op).
>
> De lige slag er:
>
> [2 går op] = {2,4,6,8,10,12,14,16,18,20}
>
> Dem tre går op i var:
>
> [3 går op] = {3,6,9,12,15,18}
>
> Vi *ved* at udfaldet er lige, så ved vi også at sandsynligheden for at
> resultatet er 15, er nul. Vi behøver altså kun kigge på:
>
> [3 går op] snit [2 går op] = {6,12,18}
>
> Men ud af hvad? Vi ved jo at det er lige, så vi har tre muligheder
> for at tre går op, ud af de 10 hvor 2 går op. Altså en sandsynlighed
> på 3/10.
>
> Med en uniform fordeling er det forholdsvis nemt at se. Den helt
> generelle regel er:
>
> Man finder sandsynligheden for at udfaldet er i en eller anden
> delmængde af de mulige udfald ved at dividere delmængdens størrelse
> med hele mængdens størrels.
>
> Hvis vi ved/antager at resultatet er i en mindre del af hele mængden,
> så begrænser vi vores fokus til den mængde. Sandsynligheden for at
> ligge i delmængden er så kun størrelsen på den del af delmængden
> vi begrænser os til i forhold til hele mængden vi begrænser os til.
> (her kunne et Venn-diagram være godt :).
>
> /L
> --
> Lasse Reichstein Nielsen - lrn@hotpop.com
> DHTML Death Colors:
<URL:
http://www.infimum.dk/HTML/rasterTriangleDOM.html>
> 'Faith without judgement merely degrades the spirit divine.'