Henning Makholm wrote:
>> g(x) = (exp(x)-1)/x-a = 0 du skal så bare finde nulpunkter
> Hvorfor ikke rent ud
> h(x) = e^x-a-ax
Det er fordi g(-x) er Hammoudas udtryk for form faktor amplituden
(FFA) fra en Gaussisk polymer med x=(qRg)²/6, hvor q er længden af
moment-transfer vektoren i spredningsprocessen og Rg er
gyrationsradius for polymeren (det andet moment af excess-
spredningslængde tæthedsfordelingen).
L uendelig
Dvs. g(-x)= integral dl/L integral dr 4pir² sin(qr)/(qr) W(r,l)
0 0
hvor W(r,l) er en gaussisk fordeling i 3D med standard deviation
sigma=bL/6, hvilket er gennemsnits end-to-end afstanden for polymeren
hvis den er L lang, og b er gennemsnits længden af random walk skridt.
Dvs. at g(-x)*g(-x)*S(q) er spredningsinterferens biddraget
mellem to polymere hvis S(q) er Fourier transformationen af
deres par fordelingen for afstanden mellem deres ender.
Dvs. at der er en masse at sige om dette interessante udtryk.
Kan du sige lige så meget interessant om h(x)?
--
Carsten Svaneborg
http://www.mpip-mainz.mpg.de/~svanebor